
Malaysian Journal of Mathematical Sciences 8(1): 47-68 (2014) 

 

 

 

 
 

On Friendly Index Sets of Spiders 

 

 
1
Sin-Min Lee, 

2
Ho-Kuen Ng and 

3*
Gee-Choon Lau 

 

1
34803, Hollyhock Street,Union City, CA 94587 USA 

 

2
 Department of Mathematics, San Jose State University, 

San Jose, CA 95192 USA 
 

3
Faculty of Computer & Mathematical Sciences, 

Universiti Teknologi MARA (Segamat Campus), 

 85000 Johor, Malaysia 
 

E-mail: geeclau@yahoo.com 
 

*Corresponding author 

 

ABSTRACT 

Let G be a graph with vertex set V(G) and edge set E(G), and let A be an abelian 

group. A labeling f : V (G) → A induces an edge labeling f* : E(G) → A defined by 

f*(xy) = f(x)+f(y), for each edge xy ∈ E(G). For i ∈ A, let vf (i) = |{v ∈ V(G) : f(v) = 

i}| and ef (i) = |{e ∈ E(G) : f*(e) = i}|. Let c(f) = {|ef (i) − ef (j)| : (i, j) ∈ A × A}. A 

labeling f of a graph G is said to be A-friendly if |vf (i) − vf (j)| ≤ 1 for all (i, j) ∈ A × A. 

If c(f) is a (0, 1)-matrix for an A-friendly labeling f, then f is said to be A-cordial. 

When A = Z2, the friendly index set of the graph G, FI(G), is defined as {| ef (0) − ef 

(0)|: the vertex labeling f is Z2-friendly}. In this paper, we determined the friendly 

index sets of many spiders. 

  

Keywords: Vertex labelling, friendly labelling, cordiality, spider, tree. 

 

 

1. INTRODUCTION 

  Let G be a graph with vertex set V(G) and edge set E(G), and let A 

be an abelian group. A labeling f : V(G) → A induces an edge labeling f* : 

E(G) → A defined by f*(xy) = f(x) + f(y), for each edge xy ∈ E(G). For i ∈ A, 

let ��(�) = |{v ∈ V(G) : f(v) = i}| and ef (i) = |{e ∈ E(G) : f*(e) = i}|. Let c(f) 

= {|ef (i) − ef (j)| : (i, j) ∈ A × A}. A labeling f of a graph G is said to be A-
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friendly if | vf (i) − vf (j)| ≤ 1 for all (i, j) ∈ A × A. If c(f) is a (0, 1)-matrix for 

an A-friendly labeling f, then f is said to be A-cordial.  

 

The notion of A-cordial labelings was first introduced by Hovay in 

1991, who generalized the concept of cordial graphs of Cahit in 1987. Cahit 

considered A = Z2 and he proved the following: every tree is cordial; Kn is 

cordial if and only if n ≤ 3; Km,n is cordial for all m and n; the wheel Wn is 

cordial if and only if n   3 (mod 4); Cn is cordial if and only if n  2 (mod 

4); and an Eulerian graph is not cordial if its size is congruent to 2 (mod 4). 

Benson and Lee (1989) showed a large class of cordial regular windmill 

graphs. Lee and Liu (1991) investigated cordial complete k-partite graphs. 

Kuo, Chang and Kwong (1997) determined all m and n for which mKn is 

cordial. Cordial generalized Petersen graphs are completely characterized 

by Ho, Lee and Shee (1989). In 1990, they investigated the construction of 

cordial graphs by Cartesian product and composition.  

 

In this paper, we will exclusively focus on A = Z2, and drop the 

reference to the group. In 2006, the friendly index set FI(G) of a graph G 

was introduced by Chartrand, Lee and Zhang. The set FI(G) is defined as 

{|ef (0) − ef (1)| : the vertex labeling f is friendly}. When the context is clear, 

we will drop the subscript f. 

 

Note that if 0 or 1 is in FI(G), then G is cordial. Thus the concept of 

friendly index sets could be viewed as a generalization of cordiality. Cairnie 

and Edwards (2000) have determined the computational complexity of 

cordial labeling and Zk-cordial labeling. They proved that to decide whether 

a graph admits a cordial labeling is NP-complete. Even the restricted 

problem of deciding whether a connected graph of diameter 2 has a cordial 

labeling is NP-complete. Thus it is difficult to determine the friendly index 

sets of graphs.  

 

In 2008, the friendly index sets of a few classes of graphs, in 

particular, complete bipartite graphs and cycles, are determined by Lee and 

Ng. It is shown that the star K1,n has friendly index set FI(K1,n) = {1} if n is 

odd, and {0, 2} if n is even. The friendly index set of the corona of the path 

with K1, Pn © K1, is {1, 3, . . . , 2n − 1}. For a full binary tree T with depth 1, 

FI(T) = {0, 2}. A full binary tree T with depth d > 1 has FI(T) = {0, 2, 

4, . . . , 2d + 1 − 4}. For more details of known results on friendly index sets, 

see Ho (2007), Kwong (2008), Lee and Ng (2007), Lee (2010), Salehi and 

Lee (2006). 
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Theorem 1.1   For any graph with q edges, the friendly index set FI(G) ∈ 

{0, 2, 4, . . . , q} if q is even and FI(G) ∈ {1, 3, . . . , q} if q is odd. 

 

In 2008, Lee and Ng conjectured that the numbers in FI(T) for any tree T 

form an arithmetic progression. Various classes of tree were studied and 

their friendly index sets were shown to satisfy the conjecture. Counter-

examples were eventually constructed by Salehi and De in 2008. 

 

Example 1   

The following tree with order 10 and size 9 has FI(G) = {1, 3, 5, 9}. 
 

 

 
 

Figure 1: Tree with friendly indices not forming an arithmetic progression 

 

Let Pn be a path of n vertices. A tree is called a spider if it has a center 

vertex c with degree k > 1 while each of the other vertices is either a leaf or 

has degree 2. Thus, a spider is an amalgamation of k paths with various 

lengths. If it has x1 paths with length a1, x2 paths with length a2, etc., we 

denote the spider by ��(�	

� , �



� , … , ��

�), where x1 + x2 + . . .+ xm = k (see 

Figure 2.) 

 

 
Figure 2: Examples of spider graphs 

 

In this paper, we determined the friendly index sets of many spiders. 

 

2. THE SPIDER SP(1
n
, a) 

The spider SP(1
n
, a) has (n + a) edges and (n + a + 1) vertices. For 

convenience, call the path from the center with length a the stem, and the 

other n paths with length 1 the branches. Let the vertices on the stem be 

sequentially c, v1, . . . , va, where c is the center.  
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When we say label a branch, we mean label the vertex of the branch 

that is not the center. Without loss of generality, we may assume that the 

center has vertex label 0. Otherwise, change each vertex label x to its 

complement 1 − x, and the edge labels remain the same. 

 

When a = 0 or 1, we have a star (see Lee and Ng (2008)). From 

now on, assume that a ≥ 2. 

 

Theorem 2.1  Let Pn denote the path with n vertices. Then FI(Pn) = {1, 3, 

5, . . . , (n − 1)} if n is even, and = {0, 2, 4, . . . , (n − 1)} if n is odd. 

 

Proof.  From Theorem 1.1, it suffices to show that all these integers are 

attainable. Label the vertices alternately with 0’s and 1’s, starting with 0. 

Note that the vertex labeling is friendly, with v(1) − v(0) = 0 when n is even, 

and v(1) − v(0) = −1 when n is odd. 

 

First consider an even n. We make the following vertex label 

rearrangements. Keep the first and second vertex labels unchanged, and 

change all the remaining vertex labels on the path to their complements. 

Obviously v(0) and v(1) remain unchanged, and we have introduced exactly 

one zero edge label. Now keep the first four vertex labels (0, 1, 1, and 0) 

unchanged, and change all the remaining vertex labels on the path to their 

complements. Again, v(0) and v(1) remain unchanged, and we have 

introduced another zero edge label. Continue this to the end of the path, and 

we will have (n/2) − 1 edges labeled 0, and n/2 edges labeled 1. In this 

process, we have e(0) = 0, 1, 2, . . . , (n/2) − 1. Thus e(1) = n − 1, n − 2, n − 

3, . . . , n/2, and so e(1) − e(0) = n − 1, n − 3, n − 5, . . . , 1. 

 

Now consider an odd n. We make exactly the same rearrangements as 

above. The vertex labelings remain friendly, with v(1) − v(0) alternating 

between –1 and 1. The last step is to change the last vertex label to its 

complement, giving sequentially the edge labels 1, 0, 1, 0, . . . , 1, 0, and e(1) 

= e(0).     �  
 

Theorem 2.2   FI(SP(1
2
, a)) = {0, 2, 4, . . . , a + 2} if a is even. 

 

Proof.  From Theorem 1.1, it suffices to show that all these integers are 

attainable. Note that the stem is the path Pa + 1, with an odd number of 

vertices. Label the center 0, both branches 1, and the vertices on the stem 

alternately. This labeling is friendly with v(1) − v(0) = 1, and all edge labels 

are 1s, giving e(1) − e(0) = a + 2. Then label the center 0, one branch 1 
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while the other branch 0, and the vertices on the stem alternately. This 

labeling is friendly with v(1) − v(0) = −1, and e(1) − e(0) = a. Use the 

procedure in the proof of Theorem 2.1 to rearrange the vertices on the stem 

to obtain e(1) − e(0) = a − 2, a − 4, . . . , 2, and 0, with v(1) − v(0) 

alternating between –1 and 1. �  

 

Example 2   

FI(SP(1
2
, 4)) = {0, 2, 4, 6}. 

 

 
 

Figure 3: Friendly labelings for SP(12, 4) 

 

Theorem 2.3   FI(SP(1
2
, a) = {1, 3, 5, … , a} if a is odd. 

 

Proof.  We first show that (a + 2) ∉ FI(SP(1
2
, a)).  Otherwise, e(1) = 0 or 

e(0) = 0.  If e(1) = 0, all vertices have the same label.  Such a labeling is not 

friendly.  If e(0) = 0, all edges have label 1.  Since the center has label 0, 

both branches have label 1, and the vertices on the stem starting from v1 

must have alternate labels 1 and 0.  Since a is odd, this labeling is not 

friendly. 

 

Now we show that all positive odd integers up to a are attainable.  Label the 

center 0, the two branches by 0 and 1, and the vertices on the stem 

alternately.  This labeling is friendly with v(1) – v(0) = 0, and e(1) – e(0) = 

a.  Use the procedure in the proof of Theorem 2.1 to obtain all the other 

values. �    
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Example 3  

FI(SP(1
2
, 7)) = {1, 3, 5, 7}. 

 

 
 

Figure 4: Friendly labelings for SP(12, 7) 

 

Note that the cases n = 0, 1, and 2 have been settled in Theorems 

2.1, 2.2 and 2.3.  From now on, assume that n ≥ 3. 

 

Lemma 2.1   (n + a) ∉ FI(SP(1
n
, a)), if n ≥ 3 and a ≥ 2. 

 
Proof.  Otherwise, e(1) = 0 or e(0) = 0.  If e(1) = 0, all vertices have the 

same label.  Such a labeling is not friendly.  If e(0) = 0, all edges have label 

1.  Since the center has label 0, all branches (at least 3 of them) and v1 must 

have label 1, and the other vertices on the stem have alternate labels.  Such 

a labeling is not friendly.      �  

 

We first consider n < a. 

 

Lemma 2.2   max{FI(SP(1
n
, a))} = n + a – 2, if a > n ≥ 3. 

 

Proof.   It suffices to show that |e(1) – e(0)| = n + a – 2 is attainable. 

Case 1:  (n + a) is odd, i.e., an odd number of edges and an even number of 

vertices. We label the vertices (( 1) 2) ,...,a n av v− +  on the stem with the label 1 

and all other vertices of the graph with the label 0.  Then e(1) = 1 and e(0) = 

n + a – 1, giving |e(0) – e(1)| = n + a – 2. 

 

Case 2:  (n + a) is even, i.e., an even number of edges and an odd number of 

vertices.  We label the vertices (( ) 2) 1,...,a n av v− +  on the stem with the label 1 

and all other vertices of the graph with the label 0.  Then e(1) = 1 and e(0) = 

n + a – 1, giving |e(0) – e(1)| = n + a – 2. �  
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Theorem 2.4  If a > n ≥ 3, FI(SP(1
n
, a)) = {n + a – 2, n + a – 4, … }, 

ending at 1 if (n + a) is odd, and ending at 0 if (n + a) is even. 

 

Proof.  The labelings in Lemma 2.2 give e(0) – e(1) = n + a – 2.   

 

Case 1:  (n + a) is odd. 

 

Step 1:  Interchange the vertex label 0 from one of the branches and the 

vertex label 1 at (( 1) 2).a nv − +  Then e(0) is decreased by 1 and e(1) is increased 

by 1, giving e(0) – e(1) = n + a – 4.  Continue to interchange vertex labels 0 

from the branches and the vertex labels 1 at (( 1) 2) 1 ( 1) / 2,..., .a n a nv v− + + + −  At that 

time, e(0) = a – 1 and e(1) = n + 1, giving |e(0) – e(1)| = a – n – 2.   

 

Step 2:  We now start another labeling as follows.  Label all branches with 

1, the vertices from c to vn–1 with 0, and the vertices from vn to va (an even 

number of them) alternately with 0’s and 1’s.  For this labeling, e(1) = a and 

e(0) = n, and so |e(1) – e(0)| = a – n.  For the path from vn to va, use the 

rearrangements in the proof of Theorem 2.1, keeping |v(1) – v(0)| 

unchanged, and decreasing |e(1) – e(0)| by 2 each time, until the difference 

becomes 1.   

 

Case 2:  (n + a) is even. 

The proof is exactly the same as above with these exceptions.  In Step 1, 

start the interchange at vertex v((a–n)/2)+1.  In Step 2, the vertex vn has label 0, 

and the vertices from vn+1 to va (an even number of them) take alternate 

labels 0’s and 1’s.  For this labeling, |v(1) – v(0)| = 1, and e(1) = a – 1, e(0) 

= n + 1.  The rearrangements in the proof of Theorem 2.1 decrease |e(1) – 

e(0)| by 2 each time, until the difference becomes 0.           �  

 

Example 4  

 FI(SP(1
3
, 4) = {1, 3, 5}. 

 

 
 

 
 

Figure 5: Friendly labelings for SP(13, 4) 
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Example 5 

FI(SP(1
4
, 8) = {0, 2, 4, 6, 8, 10}. 

 

 
 

Figure 6: Friendly labelings for SP(14, 8) 

 

Next consider n ≥ a. 

 

To find max{FI(SP(1
n
, a))}, we seek to maximize e(0) or e(1). If we put 

two complementary labels on alternate branches, they will give one 0-edge 

and one 1-edge, canceling each other in |e(1) – e(0)|. However if we label 

alternate vertices on the stem with complementary vertex labels, these 

alternate vertex labels will generate 1-edges.  Thus to maximize e(1), we 

should label the stem vertices alternately with 0’s and 1’s. On the other 

hand, a 1-vertex on each of x branches will generate x 1-edges.  However, 

labeling x vertices on the stem consecutively by 1’s will generate (x – 1) 0-

edges. Thus to maximize e(0), we should label the stem vertices 

consecutively by as many 1’s as possible. 

 

To maximize e(0), consider two cases. 

 

Case 1:  (n + a) is odd, i.e., an odd number of edges and an even number of 

vertices. To maximize e(0), we label all vertices on the stem, other than the 

center, with the label 1.  Then there must be (n + a – 1)/2 branches labeled 

0, and (n – a + 1)/2 branches labeled 1.  Thus e(1) = (n – a + 1)/2 + 1 and 

e(0) = (n + a – 1)/2 + (a – 1), giving |e(1) – e(0)| = 2a – 3. 
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Case 2:  (n + a) is even, i.e., an even number of edges and an odd number of 

vertices. Again, we label all vertices on the stem, other than the center, with 

the label 1.  Since |v(1) – v(0)| = 1, to maximize e(0), there must be (n + a)/2 

branches labeled 0, and (n – a)/2 branches labeled 1.  Thus e(1) = (n – a)/2 

+ 1 and e(0) = (n + a)/2 + (a – 1), giving |e(1) – e(0)| = 2a – 2. 

 

To maximize e(1), we put alternate complementary vertex labels on the 

stem to generate a edge labels of 1.   

 

Case 1:  n is even and a is odd. On the stem, v(1) – v(0) = 0.  Then there 

must be n/2 branches labeled 0, and n/2 branches labeled 1.  Thus e(1) = 

(n/2) + a and e(0) = (n/2), giving |e(1) – e(0)| = a. 

 

Case 2:  n is even and a is even. On the stem, v(1) – v(0) = –1.  To 

maximize e(1), there must be (n/2) – 1 branches labeled 0, and (n/2) + 1 

branches labeled 1.  Thus e(1) = (n/2) + 1 + a and e(0) = (n/2) – 1, giving 

|e(1) – e(0)| = a + 2. 

      

Case 3:  n is odd and a is odd. On the stem, v(1) – v(0) = 0.  To maximize 

e(1), there must be (n – 1)/2 branches labeled 0, and (n + 1)/2 branches 

labeled 1.  Thus e(1) = (n + 1)/2 + a and e(0) = (n – 1)/2, giving |e(1) – e(0)| 

= a + 1. 

     

Case 4:  n is odd and a is even. On the stem, v(1) – v(0) = –1.  Then there 

must be (n – 1)/2 branches labeled 0, and (n + 1)/2 branches labeled 1.  

Thus e(1) = (n + 1)/2 + a and e(0) = (n – 1)/2, giving |e(1) – e(0)| = a + 1. 

 
Theorem 2.5   FI(SP(1

n
, 2)) = {1, 3} if n is odd, and = {0, 2, 4} if n is even. 

 
Proof.  By comparing the maximization of e(0) and the maximization of 

e(1), we see that max{FI(SP(1
n
, 2))} = 3 if n is odd, and = 4 if n is even.   

     
First consider an odd n.  Label (n – 1)/2 of the branches with 0, and the 

other (n + 1)/2 branches with 1.  The vertices c, v1, and v2 are labeled with 

0, 1, and 0 respectively.  Then v(0) = v(1), and e(1) – e(0) = 3.  Then keep 

the branch labels the same, but label the vertices c, v1, and v2 with 0, 0, and 

1 respectively.  We have v(0) = v(1), and e(1) – e(0) = 1. 
     
Now consider an even n.  Label (n/2) – 1 of the branches with 0, and the 

other (n/2) + 1 branches with 1.  The vertices c, v1, and v2 are labeled with 

0, 1, and 0 respectively.  Then v(1) – v(0) = 1, and e(1) – e(0) = 4.  Then 

keep the branch labels the same, but label the vertices c, v1, and v2 with 0, 0, 
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and 1 respectively.  We have v(1) – v(0) = 1, and e(1) – e(0) = 2.  Finally, 

label half of the branches 0 and the remaining branches 1.  Label the 

vertices c, v1, and v2 with 0, 0, and 1 respectively.  Then v(1) – v(0) = –1, 

and e(1) – e(0) = 0.  �  

 

Lemma 2.3   For n ≥ a ≥ 3, max{FI(SP(1
n
, a))} = 2a – 3 if (n + a) is odd, 

and = 2a – 2 if (n + a) is even.           

 

Proof.   For a = 3 and n odd, we have 2a – 2 ≥ a + 1.  For a = 3 and n even, 

we have 2a – 3 ≥ a.  For a ≥ 4, we have 2a – 3 ≥ a + 1, and 2a – 2 ≥ a + 2.        

�  
 

Theorem 2.6    For n ≥ a ≥ 3, FI(SP(1
n
, a)) = {2a – 3, 2a – 5, … , 1} if (n + 

a) is odd, and = {2a – 2, 2a – 4, … , 0} if (n + a) is even. 

 
Proof.   Consider the case when (n + a) is even.  From above, the value    

(2a – 2) is attainable.  Interchange the vertex label 0 from one of the 

branches and the vertex label 1 at v1.  Then e(0) is decreased by 1 and e(1) 

is increased by 1, giving |e(1) – e(0)| = 2a – 4.  Continue to interchange 

vertex labels 0 from the branches and the vertex labels 1 at v2, … , va–1.  At 

that time, e(0) = (n + a)/2 = e(1), giving |e(1) – e(0)| = 0. 

      

Now consider the case when (n + a) is odd.  From above, the value (2a – 3) 

is attainable.  Interchange the vertex label 0 from one of the branches and 

the vertex label 1 at v1.  Then e(0) is decreased by 1 and e(1) is increased by 

1, giving |e(1) – e(0)| = 2a – 5.  Continue to interchange vertex labels 0 

from the branches and the vertex labels 1 at v2, … , va–2.  At that time, e(0) = 

(n + a + 1)/2, and e(1) = (n + a – 1)/2, giving |e(1) – e(0)| = 1.             �  

 

Example 6  

FI(SP(1
4
, 3) = {1, 3}. 

 

 
 

Figure 7: Friendly labelings for SP(14, 3) 
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Example 7 

FI(SP(1
5
, 3)) = {0, 2, 4} 

 

 
 

Figure 8: Frienldy labelings for SP(15, 3) 

 

 

3. A GENERAL RESULT FOR SPIDERS 

Notation:  We let q denote the number of edges.  We will always start with 

the following labeling.  Label the center vertex 0.  Label all vertices with an 

odd distance from the center vertex 1, and all vertices with an even distance 

from the center 0.  It is obvious that all edge labels are 1, and thus e(1) – 

e(0) = q.  We will call this the all-one labeling.  Note that this labeling is 

not necessarily friendly. 

 

Theorem 3.1   Let a1, a2, … , am ≥ 2 be even.  Then FI(SP(a1, a2, … , am)) = 

{0, 2, 4, … , q}. 

 

Proof.  From Theorem 1.1, it suffices to show that each even integer 

between 0 and q is attainable.  We start with the all-one labeling.  Note that 

the vertex labeling is friendly, with v(1) – v(0) = –1. 

Consider each i between 1 and m.  For the path of the spider with ai edges, 

we make the following vertex label rearrangements.  Keep the first (i.e., 

center) vertex label unchanged, and change all the remaining vertex labels 

on this path to their complements.  Obviously v(0) and v(1) remain 

unchanged, and we have introduced exactly one zero edge label.   

Now keep the first three vertex labels (0, 0, and 1) unchanged, and change 

all the remaining vertex labels on this path to their complements.  Again, 

v(0) and v(1) remain unchanged, and we have introduced another zero edge 

label.  Then keep the first five vertex labels (0, 0, 1, 1, and 0) unchanged 

and alter the remaining labels in the same way to introduce one more zero 

edge label while maintaining a friendly vertex labeling.  Continue this to the 

end of the path, and we will have (ai /2) edges labeled 0, and (ai /2) edges 

labeled 1.  Repeat this for all the remaining paths, until we have (q/2) edges 

labeled 0, and (q/2) edges labeled 1.  In this process, we have e(0) = 0, 1, 2, 
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… , (q/2).  Thus e(1) = q, q – 1, q – 2, … , (q/2), and so e(1) – e(0) = q, q – 

2, q – 4, … , 0.        �  

 

Example 8   

The friendly index set FI(SP(2
4
)) = {0, 2, 4, 6, 8}. 

 

 
 

 
 

Figure 9: Friendly labelings for SP(24) 

 

Lemma 3.1   Let b be odd. Then FI(SP(b)) = {1, 3, 5, . . . , b}. 

 

Proof.   Note that this spider is just a path. The result follows from 

Theorem 2.1.                �  

 

Lemma 3.2  Let b1 and b2 be odd. Then FI(SP(b1, b2)) = {0, 2, 4, . . . , q}. 

 

Proof.    Note that this spider is just a path of even edges. The result follows 

from Theorem 2.1.                 �  

 

Lemma 3.3   Let b1, b2 and b3 be odd. Then FI(SP(b1, b2, b3)) = {1, 3, 

5, . . . , q − 2}. 
 

Proof.  Suppose e(0) = 0 for a given friendly labeling of SP(b1, b2, b3). 

Without loss of generality, we may assume the degree 3 vertex, c, is labeled 

with 0. Hence, the labeling must be the all-one labeling. However, this 

labeling has v(1) – v(0) = 2, a contradiction to the condition of friendly 
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labeling. Obviously, e(1) ≠ 0 too. Hence, e(0), e(1) ≥ 1 and max{FI(SP(b1, 

b2, b3))} ≤ q – 2. Note that in the all-one labeling, all the end-vertices are 

labeled with 1. Now, change the vertex labels of v3,1, v3,2, …, ��,��
 to their 

complements, we have v(1) = v(0) and e(1) = 1 with max{FI(SP(b1, b2, 

b3))} = q – 2 attained. From Theorem 1.1, it suffices to show that each odd 

integer between 1 and q – 2 is attainable.   

 

Use Theorem 2.1 on the odd-length paths ����	, ����	 and ����	 

respectively by keeping the vertex labels of c, v1,1, v2,1 and v3,1 (0, 1, 1 and 

0) unchanged. In this process, we produce labelings with e(0) = 1, 2, 3, …, 

(b1 + b2 + b3 – 1)/2. Thus, e(1) = q – 1, q – 2, q – 3, …, (b1 + b2 + b3 + 1)/2, 

and thus, v(1) – v(0) = q – 2, q – 4, …, 3, 1.  �  

 
Lemma 3.4   Let b1, b2, b3 and b4 be odd.  Then FI(SP(b1, b2, b3, b4)) = {0, 2, 

4, … , q – 2}. 

 

Proof.   Suppose e(0) = 0 for a given friendly labeling of SP(b1, b2, b3, b4). 

Without loss of generality, we may assume the degree 4 vertex, c, is labeled 

with 0. Hence, the labeling must be the all-one labeling. However, this 

labeling has v(1) – v(0) = 3, a contradiction to the condition of friendly 

labeling. . Obviously, e(1) ≠ 0 too. Hence, e(0), e(1) ≥ 1 and max{FI(SP(b1, 

b2, b3, b4))} ≤ q – 2. Note that in the all-one labeling, all the end-vertices are 

labeled with 1. Now, change the vertex labels of v4,1, v4,2, …, ��,��
 

to their complements, we have v(1) – v(0) = 1 and e(0) = 1 with 

max{FI(SP(b1, b2, b3, b4))} = q – 2 attained. From Theorem 1.1, it suffices 

to show that each even integer between 0 and q – 2 is attainable.   

 

Suppose all of b1, b2, b3 and b4 ≥ 3. Use Theorem 2.1 on the odd-length 

paths ����	, ����	, ����	  and ����	  respectively by keeping the vertex 

labels of c, v1,1, v2,1, v3,1 and v4,1 (0, 1, 1, 1 and 0) unchanged.  

In this process, we produce labelings with max{e(0)} = (bi – 1)/2 for the 

paths ����	, i = 1, 2, 3, and max{e(0)} = (b4 + 1)/2 for the path ����	. Note 

that we always have v(1) – v(0) = 1. Now, if one of bi ≡ 1 (mod 4), then ��,��
 

is labeled with 1, change the label of this vertex to 0. Otherwise, without 

loss of generality, change the last three vertex labels of the path ���
 (1, 1 

and 0) to their complements.  In this way, v(0) – v(1) = 1 and we have 

introduced one more zero edge label. Therefore, e(0) = 1, 2, 3, …, (b1 + b2 + 

b3 + b4)/2. Thus, e(1) = q – 1, q – 2, q – 3, …, (b1 + b2 + b3 + b4)/2, and |v(1) 

– v(0)| = q – 2, q – 4, …, 4, 2, 0.         
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Note that at most three of the legs are paths of length one. Without loss of 

generality, we may assume b1 ≥ 3 and b4 = 1. Use Theorem 2.1 on the odd 

path(s) of length bi ≥ 3 (respectively) by keeping the vertex labels of c, v1,1, 

v2,1, v3,1 and v4,1 (0, 1, 1, 1 and 0) unchanged. In this process, we produce 

labelings with e(0) = 1, 2, 3, …, (b1 + b2 + b3 + b4)/2 – 1. Now, if b1 ≡ 1 

(mod 4), then �	,��
 is labeled with 1, change the label of this vertex to 0. 

Otherwise, change the last three vertex labels of the path ���
 (1, 1 and 0) to 

their complements. Now, v(0) – v(1) = 1 and we have introduced one more 

zero edge label. Either way, we have max{e(0)} = (b1 + b2 + b3 + b4)/2. 

Thus, |v(1) – v(0)| = q – 2, q – 4, …, 4, 2, 0.  € 

 

Lemma 3.5   Let a1, a2, … , am ≥ 2 be even and let b be odd. Then FI(SP(a1, 

a2, … , am, b)) = {1, 3, 5, … , q}. 

 

Proof.  We start with the all-one labeling.  Note that the vertex labeling is 

friendly, with v(1) – v(0) = 0. 

 

Use Theorem 3.1 to produce labelings with e(0) = 0, 1, … , (a1 + a2 + … + 

am)/2.  Note that v(0) and v(1) are both unchanged throughout this process. 

     

Now use Lemma 3.1 to produce labelings with e(0) = ((a1 + a2 + … + am)/2) 

+ 1, … , (q – 1)/2.  Note that both v(0) and v(1) are unchanged throughout 

this process.  

 

Note that e(1) = q, q – 1, … , (q + 1)/2, and so e(1) – e(0) = q, q – 2, … , 1. 

�    
 

Lemma 3.6   Let a1, a2, … , am ≥ 2 be even and let b1 and b2 be odd.  Then 

FI(SP(a1, a2, … , am, b1, b2)) = {0, 2, 4, … , q}. 

 

Proof.  We start with the all-one labeling.  Note that the vertex labeling is 

friendly, with v(1) – v(0) = 1. 

 

Use Theorem 3.1 to produce labelings with e(0) = 0, 1, … , (a1 + a2 + … + 

am)/2.  Note that v(0) and v(1) are both unchanged throughout this process. 

 

Now use Lemma 3.2 to produce labelings with e(0) = (a1 + a2 + … + am)/2 

+ 1, … , q/2.  Note that v(1) – v(0) changes from 1 to –1, and is friendly 

throughout the process. 
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Note that e(1) = q, q – 1, … , q/2, and so e(1) – e(0) = q, q – 2, … , 0.  �  

 

Lemma  3.7  Let a1, a2, … , am ≥ 2 be even and let b1, b2 and b3 be odd.  

Then FI(SP(a1, a2, … , am, b1, b2, b3)) = {1, 3, 5, … , q – 2}. 

 
Proof.  Suppose e(0) = 0 for a given friendly labeling of SP(a1, a2, … , am, 

b1, b2, b3). Without loss of generality, we may assume the degree m+3 

vertex, c, is labeled with 0. Hence, the labeling must be the all-one labeling. 

However, this labeling has v(1) – v(0) = 2, a contradiction to the condition 

of friendly labeling. Hence, e(0) ≥ 1 and max{FI(SP(a1, a2, … , am, b1, b2, 

b3))} ≤ q – 2. Note that in the all-one labeling, the last vertices of the three 

odd-length paths are labeled with 1. Now, change the vertex labels of v3,1, 

v3,2, …, ��,��
 to their complements, we have v(1) = v(0) with max{FI(SP(a1, 

a2, … , am, b1, b2, b3))} = q – 2 attained. 

        

Use Theorem 3.1 to produce labelings with e(0) = 1, 2, …, (a1 + a2 + ... + 

am)/2 + 1. Note that we still have v(0) = v(1). 

        

Now use Lemma 3.3 to produce labelings with e(0) = (a1 + a2 + ... + am)/2 + 

2, …,  (a1 + a2 + ... + am)/2 + (b1 + b2 + b3 – 1)/2. Thus, v(1) – v(0) = q – 2, 

q – 4, …, 3, 1.   �  

 

Lemma 3.8   Let a1, a2, … , am ≥ 2 be even and let b1, b2, b3 and b4 be odd.  

Then FI(SP(a1, a2, … , am, b1, b2, b3, b4)) = {0, 2, 4, … , q – 2}. 

 

Proof.  Suppose e(0) = 0 for a given friendly labeling of SP(a1, a2, … , am, 

b1, b2, b3, b4). Without loss of generality, we may assume the degree m + 4 

vertex, c, is labeled with 0. Hence, the labeling must be the all-one labeling. 

However, this labeling has v(1) – v(0) = 3, a contradiction to the condition 

of friendly labeling.  

Hence, e(0) ≥ 1 and max{FI(SP(a1, a2, … , am, b1, b2, b3, b4))} ≤ q – 2. Note 

that in the all-one labeling, the last vertices of the four odd-length paths are 

labeled with 1. Now, change the vertex labels of v4,1, v4,2, …, ��,��
 to their 

complements, we have v(1) – v(0) = 1 with max{FI(SP(a1, a2, … , am, b1, b2, 

b3, b4))} = q – 2 attained.  

        

Use Theorem 3.1 to produce labelings with e(0) = 1, 2, …, (a1 + a2 + ... + 

am)/2 + 1. Note that we still have v(0) = v(1). 
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Now use Lemma 3.4 to produce labelings with e(0) = (a1 + a2 + ... + am)/2 + 

2, …,  (a1 + a2 + ... + am)/2 + (b1 + b2 + b3 + b4)/2. Thus, v(1) – v(0) = q – 2, 

q – 4, …, 3, 1.   �  

 

Theorem 3.2   Let a1, a2, … , am ≥ 2 be even and let b1, b2, … , bn be odd.  

Then FI(SP(a1, a2, … , am, b1, b2, … , bn))  

 

(1)     = {0, 2, 4, … , q} when n = 0 and 2, 

(2)     = {1, 3, 5, … , q} when n = 1,  

(3)     = {1, 3, 5, …, q – 2} when n = 3, 

(4)     = {0, 2, 4, …, q – 2} when n = 4, 

(5)     ⊇ {0, 2, 4, … , q – n + 2} when n is even and ≥ 6, and  

(6)     ⊇ {1, 3, 5, … , q – n + 1} when n is odd and ≥ 5. 

 

Proof.  When n = 0, 1, 2, 3 and 4, the result follows from Theorem 3.1, 

Lemma 3.5, Lemma 3.6, Lemma 3.7 and Lemma 3.8, respectively. 

 

Consider even n ≥ 6.  Start with the all-one labeling, which is not friendly, 

because v(1) – v(0) = n – 1.  For each of the paths with b4, b6, … , bn 

vertices, keep the center vertex label unchanged, and change the labels of 

all the other vertices to their complements.  We have increased v(0) by (n – 

2)/2 and decreased v(1) by (n – 2)/2.  After this relabeling, v(1) – v(0) = 1, 

e(0) = (n – 2)/2, e(1) = q – (n – 2)/2, and e(1) – e(0) = q – n + 2.  Use the 

procedure in Lemma 3.6 to relabel the vertices on the paths with a1, a2, … , 

am, b1, and b2 edges.  In this process, e(0) = ((n – 2)/2) + 1, … , ((n – 2)/2) + 

(a1 + a2 + … + am + b1 + b2)/2.  For each of the other paths, i.e., those with 

b3, b4, … , bn vertices, keep the first two vertex labels unchanged, and 

change the others to their complements.  Then keep the first four vertex 

labels unchanged, and change the others to their complements, etc.  The 

difference v(1) – v(0) remains unchanged throughout this process.  

Eventually we will have e(0) = q/2, and so e(1) – e(0) = 0. 

 

Consider odd n ≥ 5.  Start with the all-one labeling, which is not friendly, 

because v(1) – v(0) = n – 1.  For each of the paths with b3, b5, … , bn 

vertices, keep the center vertex label unchanged, and change the labels of 

all the other vertices to their complements.  We have increased v(0) by (n – 

1)/2 and decreased v(1) by (n – 1)/2.  After this relabeling, v(1) – v(0) = 0, 

e(0) = (n – 1)/2, e(1) = q – (n – 1)/2, and e(1) – e(0) = q – n + 1.  Use the 

procedure in Lemma 3.5 to relabel the vertices on the paths with a1, a2, … , 

am, and b1 edges.   
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In this process, e(0) = ((n – 1)/2) + 1, … , ((n – 1)/2) + (a1 + a2 + … + am + 

b1 – 1)/2.  For each of the other paths, i.e., those with b2, b3, … , bn vertices, 

keep the first two vertex labels unchanged, and change the others to their 

complements.  Then keep the first four vertex labels unchanged, and change 

the others to their complements, etc.  The difference v(1) – v(0) remains 

unchanged throughout this process.  Eventually we will have e(0) = (q – 

1)/2, and so e(1) – e(0) = 1.       �  

 

Corollary 3.1   FI(SP(2
n
, 2k + 1)) = {1, 3, 5, … , 2(n + k) + 1} for any n,   

k > 1. 

 

Example 9   

FI(SP(1,2
2
)={1, 3, 5}. 

 

 

 
 

Figure 10: Friendly labelings for SP(1, 22) 

 

Example 10   

FI(SP(1
2
, 2

2
) = {0, 2,4, 6}. 
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Figure 11: Friendly labelings for SP(12, 22) 

 

Example 11   

FI(SP(1
3
, 2

2
)) = {1, 3, 5} 

 

 
 

Figure 12: Friendly labelings for SP(13, 22) 

 

Example 12   

FI(SP(1
4
, 2

2
)) = {0, 2, 4, 6}. 
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Figure 12: Friendly labelings for SP(14, 22) 

 

Example 13   

FI(SP(1
5
, 2

2
)) = {1, 3, 5}. 

 

 
 

Figure 14: Friendly labelings for SP(15, 22) 

 

Example 14   

FI(SP(1,2,4,3,7)) = {1, 3, 5, …, 15}. 
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Figure 15: Friendly labelings for SP(1,2,4,3,7) 

 

We end this paper by noting that the inclusions in Theorem 3.2 

could be proper.  

 

Example 15   

Consider SP(1
6
, 6).  By Theorem 2.6, FI(SP(1

6
, 6)) = {0, 2, 4, 6, 8, 10}.  

However q = 12 and n = 6, and so q – n + 2 = 8. 
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